Spectral properties of non- self-adjoint elliptic differential operators in the Hilbert space

نویسندگان

چکیده

‎Let $\Omega$ be a bounded domain in $R^{n}$ with smooth boundary‎ ‎$\partial\Omega$‎. ‎In this article‎, ‎we will investigate the spectral‎ ‎properties of non-self adjoint elliptic differential operator\\‎ ‎$(Au)(x)=-\sum^{n}_{i,j=1}\left(\omega^{2\alpha}(x)a_{ij}(x)‎ ‎\mu(x)u'_{x_{i}}(x)\right)'_{x_{j}}$‎, ‎acting Hilbert space ‎$H=L^{2}{(\Omega)}$. Dirichlet-type boundary conditions‎. ‎Here‎ ‎$a_{ij}(x)= \overline{a_{ji}(x)}\;\;\;(i,j=1,\ldots,n),\;\;\;‎ ‎a_{ij}(x)\in C^{2}(\overline{\Omega})$‎, ‎and functions‎ ‎$a_{ij}(x)$ satisfies uniformly condition‎, let $ 0‎ ‎\leq \alpha < 1$‎. ‎Furthermore‎, ‎for $\forall x \in‎ ‎\overline{\Omega}$‎, ‎the function $\mu(x)$ lie the‎ ‎$\psi_{\theta_1\theta_2}$‎ , ‎where ${\psi_{\theta_1\theta_2}}=\{z ‎{\bf C}:\;\pi/2<\theta_1 \leq|arg\;z| \leq \theta_2<\pi\},$‎ 

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-self-adjoint Differential Operators

We describe methods which have been used to analyze the spectrum of non-self-adjoint differential operators, emphasizing the differences from the self-adjoint theory. We find that even in cases in which the eigenfunctions can be determined explicitly, they often do not form a basis; this is closely related to a high degree of instability of the eigenvalues under small perturbations of the opera...

متن کامل

Spectral Properties of Random Non-self-adjoint Matrices and Operators

We describe some numerical experiments which determine the degree of spectral instability of medium size randomly generated matrices which are far from self-adjoint. The conclusion is that the eigenvalues are likely to be intrinsically uncomputable for similar matrices of a larger size. We also describe a stochastic family of bounded operators in infinite dimensions for almost all of which the ...

متن کامل

The spectral properties of differential operators with matrix coefficients on elliptic systems with boundary conditions

Let $$(Lv)(t)=sum^{n} _{i,j=1} (-1)^{j} d_{j} left( s^{2alpha}(t) b_{ij}(t) mu(t) d_{i}v(t)right),$$ be a non-selfadjoint differential operator on the Hilbert space $L_{2}(Omega)$ with Dirichlet-type boundary conditions. In continuing of papers [10-12], let the conditions made on the operator $ L$ be sufficiently more general than [11] and [12] as defined in Section $1$. In this paper, we estim...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Boletim da Sociedade Paranaense de Matemática

سال: 2022

ISSN: ['0037-8712', '2175-1188']

DOI: https://doi.org/10.5269/bspm.51231